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PRFZACE

The study reported in this Memorandum is an outgrovth of RAND's

continuing interest in the electromagnetic effects of nuclear explosions.

It should be useful to students of the theoretical aspects of systems

designed to function in the environment of such explosions.
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SUMMY

The close-in electromagnetic fields produced by deflection in

the earth's field of Compton electrons from a nuclear explosion are

analyzed. Maxwell's equations in spherical coordinates are solved

by an expansion in the perturbation fields, taking into account the

space and time dependence of the conductivity and Compton current.

The field structure is determined, and it is shown that the peak change

in field is only 10 per cent.
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I. IMMO1=CTION

It is well known that nuclear explosions may produce appreciable

electromagnetic signals. (1,2) The theory has been developed for the

electromagnetic radiation from nuclear explosions at high altitudes or

in space,(3"5) and also for Compton electron interactions with the

earth's field. (6) However, most of the theory deals with electric

fields or dipole radiation fields. This Memorandum considers the near

magnetic fields. The principal mechanism treated is Compton electron

interaction.

The approximations used in the analysis restrict the solution to

early times. However, the fields may be expected to be strongest

shortly after the arrival of the gamma rays, so these results represent

the most significant portions of the field. The nature of the analysis

is such that the results should be upper bounds on the actual fields.
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II. CL0SE-IN ELECTROMAGNETIC FIELDS PRODUCED BY COMPTON ELECTRONS

The analysis will be devoted primarily to the possible exclusion

of the earth's magnetic field by the electrons produced by the nuclear

blast. To avoid great complications, the effect of the proximity of

the conducting earth will be neglected. If the earth is highly con-

ducting, the image charges induced in it will tend to cancel the

horizontal electric and vertical magnetic fields near the surface,

and to augment the vertical electric and horizontal magnetic fields

by a factor near 2. These effects may be considered in a future

Memorandum.

If the proximity of the earth is neglected, the gamma rays

produced by the blast will be emitted primarily in the radial direction.

These gamma rays will be scattered and absorbed in the atmosphere,

producing Compton electrons. We shall only consider low-altitude

blasts, for which the variation of atmospheric density with altitude

will be neglected. Since the scale height is about 8.A kin, and we

are interested in heights below 3 kin, this is a reasonable assumption.

Under these circumstances, the atmospheric conductivity will only be

a function of time and distance from the blast. In MKS units, the

conductivity is given by:

a(t,r) = e we n(t,r) (1)

where e is the electron charge in coulombs, we the electron mobility

in (meters/sec)/(volts/meter), and n(t,r) is the number of electrons

per cubic meter at the distance r from the burst point at the time t.
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The proper value of mobility to employ is somewhat uncertain.

The electrons are rapidly slowed down by collisions, and then they

become attached to oxygen via a three-body reaction. The duration

of this process is about 1 shake (10-8 sec). Measurements of the

electron mobility in air(7-10) indicate that the mobility and also

the electron attachment rate are energy-dependent.

The data are given as functions of the ratio of electric field

strength, E, to pressure, p. At atmospheric pressure, and the

field strengths estimated to be produced by a l-NT blast, E/p is so

low that there simply are no published measurements in this region,

and it is necessary to extrapolate the curve. There is appreciable

curvature in the mobility curve at the lowest values of E/p for which

there are data, so the extrapolation may be subject to error. There

is also some evidence of a cutoff in the collision process, which

causes the mean energy of the electrons to be higher and changes the

effective mobility. In all, estimates of the mobility may be in error

by a factor of 2 or 3. After discussions with R. Bjorklund and

W. Karzas on the data extrapolation process an average value of .20

meters 2 /volt-sec has been selected for the calculations. The electron

density produced by a 1-MT burst has been calculated from Fq. (4) of

Ref. 6; and the conductivity at selected values of distance and time

is listed in Table 1. The time is in shakes, measured from the

initiation time r/c, and the distance is in kilometers.

These data have been deduced from the expression

a = G(r) g(t - (2)
c



Table 1

AT)V6PMIC COM=MITIVrTY (Mms/M ) PRODUIDc B A 1-HW E•ErDWON

Time, t,
Shakes Distance, r, from burst point, km

0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0

1 1.6(-1) 2.9(-2) 6.3(-3) 1.6(-3) 4.0(-4) 1.1(-4) 3.7(-5) 6.o(-6) 9.3(-7)

2 1.7 3.3 7.0 1.9 5.0 1.4 4.0 6.7 1.2(-6)

5 1.6 2.9 6.3 1.7 5.0 1.5 4.3 6.0 1.3

10 1.3 2.4 5.3 1.4 4.3 1.14 4.3 5.0 1.1

20 9.0(-2) 1.7 3.8 1.1 3.3 1.1 3.8 4.5 8.3(-7)

50 3.8 7.7(-3) 2.2 6.7(-4) 2.2 8.0(-5) 3.0 4.0 6.3

100(1 p 2.3 5.0 1.4 4.8 1.7 6.3 2.5 3.8 5.7
see)

200 1.6 3.7 1.1 3.7 1.3 5.0 2.1 3.6 5.0

500 6.7(-3) 2.1 4.7(-4) 1.6 5.8(-5) 2.4 1.1 2.2 3.7

1.0(3) 1.6 4.o(-4) 1.2 4.0(-5) 1.7 7.8(-6) 4.1(-6) 1.3 2.8

2.0(3) 9.7(-5) 2.7(-5) 9.3(-6) 4.7(-6) 2.7(-6) 1.9 1.4 7.3(-7) 2.3

5.0(3) 5.2(-6) 1.9(-6) 1.0(-6) 7.3(-7) 5.7(-7) 5.0(-7) 4.3(-7) 3.7 1.7

L.O(4) 5.2 1.9 6.7(-7) 4.3 3.1 2.5 2.2 1.8 1.2

Numbers in parentheses denote powers of 10



G(r) - e-(/ /(r/),)2 (3)

r

g~t -) g c d t' f(t- t') e-(4)
co. 0 JoC

where X is the mean path for removal of the gamma rays (300 meters),

P is the attachment rate of the electrons (108 sec' ), go0 is a

constant which is related to the peak value of the conductivity, and

f(t) is the normalized production rate of the ganma rays. For the

listed data, a good value for go is 130, while the time dependence of

g is rather complicated. A characteristic time to represent the rise

of g is 2 shakes, while the decay time is on the order of 20 shakes.

In these units, the Maxwell equations are:

1 LE at p+(oE +) (5)
c

V). -b (6)

where p is the permeability (4v x 10-7), c the velocity of light, J

is the Compton current density (amps/meter ), E the electric field

(volts/meter) and B the magnetic induction (webers/meter2).

The Compton electrons will be deflected by the local magnetic

field. Practically all of the effect is due to the primaries, since

the secondaries undergo very little deflection, and the deflection

contributions in the two directions perpendicular to the magnetic

field roughly balance. Following Karzas and Latter(6) the Compton

current is given by:



max (t - r)
J(t,r) -Jo G(r) f(t - r) r (t'-(t ) (7)

where the velocity of the Comptons has been set equal to c in the

production function. J is a constant, G and f are as in Eq. (2).

The upper limit of the integral is equal to the larger of t - r andc
RS, where R is the range of the Comptons. Since R - 1 meter at sea

level, the approximation R/ << 1 has been made (actually, R/) - .01).

For the listed data, the constant J is 6 x 10-

The Comptons are scattered radially from their point of origin.

Take a system of spherical coordinates, with the origin at the burst

point, and the polar axis along the earth's magnetic field; then the

velocity of the deflected electrons is approximately:

0 _% e B y v t'

orsin 1 (8)

Thus the deflection is in the azimuthal direction, has a latitude dependence

sin e, and the entire system is azimuthally symmetric.

Under these conditions, the Maxwell equations split into two groups,

one involving the radial electric, latitudinal electric, and azimuthal

magnetic fields; the second involving the azimuthal electric, latitudinal

magnetic and radial magnetic fields. The first is driven by the radial

current, the second by the azimuthal current. If the radial current is

only a function of distance and time, as it is to this approximation,

the first group of equations reduces to Poisson's equation, involves

no magnetic fields, and wiill not be considered further.

In the spherical coordinates, the second group of equations may

be written as:
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r On sin 0 E• a Br (

a r -B-e (10)

r e r 7 r 7- •- Be rl •r •- • ± ..

c

+ h(t - E) sine] (n)

e 0v r.2 R2.

h(t-) = Jof(t - r) eax Bt -y vo, (.) (12)

Our task is now to solve these equations with the appropriate initial
r

conditions. For t < 1, the electric field, conductivity, and current

vanish, while the magnetic field is uniform. The angular dependence

is established by the factor sin 0 in the current. A representation

which integrates the first two equations is:

E = sine F(t,r) (13'
0 -- r F7 r

B = B sine+ sin -r F(t,r) (14)

B = B cose 2os e F(t,r) (15)r2 r

where F satisfies the wave equation

•2~2 2Fr 12 t G~rF t rF _ri]
2F = + 4G~r) - E)~ + rh(t--) (16)

wt r c o tiI

with the initial conditions
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IF . . 0 t . _
F 1 t- (17)C

F is related to the vector potential function.

Introduce as new variables the distance r, which will be re-

labeled p, and the delayred time T = t- The ave equation ex-

pressed in these variables is

2 2r 2 2 F
7 2 SG~p [g() • p h,)](18)

with the initial conditions:

F = • = 0 0 (19)

The solution obtained by Karzas and Latter(6) is equivalent to

neglecting the left side of this equation. We wish to determine

the effect of this neglect.

For this purpose, consider characteristic lengths and times.

The p dependence is characterized by the mean free path X(300 meters).

The current and conductivity are characterized by times between 2 and

20 shakes, or equivalent lengths 6 and 60 meters. Therefore, the

-variation is fast compared to the p variation. Let us introduce

dimensionless variables by:

p = X x X = 300 meters, 1 ! x r 10 (20)

S= T Y T = 10-8 sec 0 < y 5 2000 (21)

where the inequalities indicate the expected range of values of

significance of the variables. The wave equation becomes:
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+ X T x h(y)] (22)

The essential point of the transformation is that c T/A = .01. It

may be expected that derivatives with respect to x and y are of the

same order of magnitude. If we are not too close to the origin, say

x > 1, the term involving x"2 is on the same order of magnitude as

the x-derivative term. It is therefore plausible to expand the

solution in povers of c T/X, and keep only the first two terms. The

equation splits as follows:

F =F(X,y) + P F1 (xY) (23)

o 0 12ý2 04.i c Gx)g~yj a~ = 1 P cX2 T xG(x) h(y) (24)

1 XGx () 1 0 0O (25)

F 0 V = FZ =ýy . 0 at y = 0 (26)

These equations may be solved explicitly, since they are first-

order linear equations in V/ýy. Introduce a function a(y) by the

relation
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a(y) p c X g(y) = 188 X g (y) (27)

The function a(y) represents half the ratio between the characteristic

length A and the characteristic length 1/p cg(y) associated with the

magnitude of the conductivity. For large conductivities, a(y) is a

large number. For the data represented in Table 1, a(y) has a

maximum value 2 x 105 at y 5 (5 shakes), and exceeds 103 out

to y = 1000 (10 microseconds).

The solution of Eq. (24) subject to the initial condition Eq.

(26) is: x

-a(y') 1I dx G(x)1 ' x' x ~

Fo(x,y) = - p c X2 T .1 dy' h(y') f dx' G(X e

(28)

The lower limit of the x' integration has been set equal to zero to

prevent the solution from becoming exponentially large at x = 0.

The lowest-order field components are given by:

Eo(x,y) -c B 0o(x,y) x

x -a(y) f dx" G("')

2 c x 'hy fdxl 'xG(x') e

xh d 'y) fex
x -a(y) f dx" G~x")

-~ y - a f dx' x'G(x') e x'

0
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The factor h(y)/g(y) is the Karzas-Latter solution. It is therefore

necessary to study the properties of the remaining factor of Ec. (30),

which will be called W(x,y). First, since a(y) and G(x) are positive,

W(x,y) is positive. Therefore, the Karzas-Latter result that the

magnetic field is augmented rather than excluded remains valid to this

order of approximation. Second, an integration by parts brings W

into the form:
x

wx~y ..=y ft -x xG ax e'0

The integral appearing here is positive, so W(x,y) is less than

unity. Therefore, the Karzas-Latter solution is always greater than

the solution obtained here.

A detailed study of the function W(x,y) is presented in the

Appendix. A simple approximate form, correct to about 1 per cent,

has been obtained. Define a characteristic length x (y) as:

a(y) = xl(l + xl) e - (31)

For the data of Table 1, x1 is between 4 and 8 over the range 1 shake

to 10 microseconds. The length xI is the radius of the ionization

sphere, which is thus between 1200 and 2400 meters. The function W

is closely represented by

W(x,y)=1 x < x 1 (y)

"J(y) (32)
x - x
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so the Karzas-Latter result is quite accurate.

The functions x (y) and h(y)/g(y) are plotted in Figs. 1 and 2

for the data of Table 1, and the time range y < 7. The current-

conductivity ratio has been normalized by dividing by cB, producing

a dimensionless number which can be regarded as a field susceptibility

(perturbation magnetic field produced by electrons deflected by a unit

magnetic field). For y > 7, the ratio J 0 /c B a0 has the constant value

0.10. This constancy is established by the exponential character of

the decay, which may be expected for most nuclear explosions. This

decrement constant is a very gradual function of the yield. The

effective radius xl(y) decreases approximately linearly as y exceeds

7. The slope of the line is approximately .05 until values of x,

less than unity are reached, which for the listed data, takes place at

y = 200.

For the 1-41 explosion, the maximum value of x (Y) is 8. Therefore,

for distances greater than x = 8 (2.4 kin), the azimuthal electric and

latitudinal magnetic fields rise to the maximum value 8 Jo ao x, and

then decrease linearly with time with slope .05. For x less than 8,

the fields display a plateau, which begins when x1 (y) first reaches x,

and lasts until the second crossing.

The numerical constant which determines the asymptotic field

strengths is given by:

Karzas-Latter use 0.03 for this number. Discussions with R.
Bjorklund and W. Karzas concerning the interpretation of the experimental
data have established 0.10 as more accurate. Hence, the fact that our
fields are 3.3 times Karzas-Latter's upper bound is a consequence of the
choice of constants, and the analyses are consistent.
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Fig. I -Characteristic length x,(y) versus normalized retarded time
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7- R__ .- 1.- 0.lO (33)coB Mwe 2 c c q

For Compton electrons, 7 = 2, v0 - c. Here the gamma ray spectrum of

the device has been employed. The mean range of the Compton is

taken as 1 meter, corresponding to .44 MEV. This number is obtained

from the mean energy resulting by integrating the Klein-Nishina

scattering formula over the primary spectrum. The mobility is .20,

and q is the ratio of the number of secondary to primary electrons

(3 x 10 4). The insensitivity of the number to yield is apparent.

(Dr. R. Bjorklund provided the required data for these numbers.) From

the numbers presented here, it follows that the peak change in the

vertical field is on the order of 10 per cent of the earth's magnetic

field.

The field line structure will be perturbed by the current flow.

The equation for the lines of the perturbation field is

dr = r - 2 cosS F
rd- AB sin e r bFl)-r

which may be integrated to yield:

F(r,t) sin 2e = F(r et) (35)

where r denotes the value of r at which a particular field line crosses
e

the equatorial plane (e = A).

The function F must be obtained by numerical integration. Equation

(35) represents the field lines of a particular instant of time, where
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-r

F has been specified as a function of r and of t - by the wave

equation, Eq. (18), and its approximate solution Eq. (28). Accordingly,

the integration is quite complicated. The results are presented for

a time t z 10 microseconds after the initiation of the blast, at which

time the leading edge is at 3 km (10 x units). The function F should

not be taken too seriously for small values of x, although the general

behavior is correct. Figure 3 is a plot of F(x) at 10 microseconds.

Since F has a maximum, a field line must cut the equatorial

plane twice. Therefore, the lines close on themselves. The magni-

tude of the field strength varies along a given line, being largest

at the outer crossing. The perturbation field lines are plotted in

Fig. 4. These lines are arranged to have equal increments of field

strength at the outer crossing.

The lines are strongly crowded near the front, and spread as

we move inward. The line drawn closest to the front is actually that

on which the perturbation field strength at the outer crossing has

its largest value, 10 per cent of the earth's field. There are as

many lines between that line and the front as there are within that

line. Near the front, the field is predominantly in the latitudinal

direction, while at long distances within the front the field becomes

nearly radial, except at the equatorial plane. This general structure

holds for all times, though the details will vary as the front expands.

Next, we consider the higher approximations to the solution.

-Equation (25) may be solved in exactly the same manner as Eq. (24),

and the same type of approximations made. The result is that the

field near the front is affected only very slightly by the second approxi-

mation. Farther back the effect is stronger, but the field is considerably
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weaker. The higher approximations will contribute only about 1 per

cent of the total field, which is much less than the uncertainties in

the constants and in the validity of the general model. This result

means that the perturbation analysis is self-consistent. The peak

field is effectively independent of yield, but the "equivalent fire-

ball radius" x, depends logarithmically on yield.

In summary, the close-in electromagnetic fields produced by

deflection of Compton electrons in the earth's field have been analyzed,

and it has been shown that there is no significant exclusion or augmenta-

tion of the earth's field.
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The function W(x,y) has been defined by Eqs. (3) and (29) as:

x

x -a(y) fdx" G(X')

w(x,y) = f d-' x' G(x') e x (36)x
0

G(x) = e'X/x 2  (37)

The argument of a may be dropped, since W is a function of x and of a

only. As x' approaches zero, the integral in the exponent tends to

positive infinity, and the integrand tends to zero. The integral may

be rewritten as:

xoW~~y dfx' exp - , + log X' +- af G(x') di' (38)

The expression in brackets is large for x' very large or very

small. It therefore possesses a minim-m, which may be called x1 .

Call the bracketed expression *(x'). Differentiating and setting

the result equal to zero yields:

1

.(x) -1+ -a " (x1 ) -0 (39)

1 x 1
a. xiji + x,) el (Iio)
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Equation (I0) gives a as an explicit function of x1, or x1 as an

implicit function of a. The solution of this implicit relationship

has been plotted in Fig. 1 against y, using the relation between a

and y defined in the text. The integral in the exponent may be written

as:

G(x") dx" G(x') dae -f G(x') dx"
x x' x

- I(x') - I(x) (l1)

Figure 5 gives I versus x and a versus x,. For a positive,

Eq. (40) has only one solution with x, positive.

The value of W will depend strongly on whether or not the

minimum point x, is within the range of integration. If it is

within, the integrand takes its largest value at x = xl, and decreases

rapidly as x moves away from xI in either direction. In this case,

the integrand may be approximated by the well known method of steepest

descent. The axponent is replaced by the first three terms of its

Taylor series expansion about x = xl, and the resulting expression

yields a close approximation to the integral. There results:

ae*(Xl) f !' V (xi) (Z' " X) 2

w(x,y) ~ e

0
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x*"(xi Xerf (X" x)}

+ erf v X (42)

where *' denotes the second derivative of *, evaluated at xl, and

the error function erf is defined by:

2 z 2
erf z - dueu 43)

Equation (39) yields for the second derivative:

# (xl) + 3 + 1 (44)

1X

For x1 greater than 2, the arguent of the second error function ex-

ceeds 2.3, and the function is between .999 and 1. The departure

from unity may be neglected.

The first error function is zero at x = xl, and increases rapidly

to unity as x increases. Except for a small shoulder immediately

above x, the sum of error functions may be set equal to 2. The

remaining factors have been studied numerically. The variation of

* with x1 arising from th. term I(x) tends to cancel the variation

of the error function terms near x = xI. For x significantly larger

than xl, I(x) becomes negligible. The other pexts of W depend on

Sonly. The details yield:
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w X) x(y)'Cx > ((Y) (45)

For x less than x1, the minimum is not within the range of

integration. The largest values of the integrand now occur at the

end point x' = x. Again expanding the exponent, but now around the

end point, there results:

-. *'(x)(x '-x) + 1 x('-)
W(x,y) - a e-"(x) Jdx' e2 (46)x

X 
of

(x Vs,- x~~ +"(x

- erf 2 x (47)

Here, the arguments of both error functions are large. The difference,

multiplied by the exponential, yields an algebraic function. A

numerical study shows that the resulting expression varies by only

a few per cent for x ranging from 0 to 7, which is the largest

value of x1 in the detailed problem. Thus, the expression may be

set equal to unity, since it must be continuous. Therefore, the

function W is given by:



W(z,y) 1 x < x1(y)

This epression is in error by only a few per cent over the complete

range,
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